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Abstract—We consider a large-scale cyber network with N

components. Each component is either in a healthy state or an
abnormal state. To model scenarios where attacks to the network
may not follow a stochastic process and the attackers may adapt
to the actions of the intrusion detection system (IDS) in an
arbitrary and unknown way, we adopt a non-stochastic model in
which the attack process at each component can be any unknown
deterministic sequence. Due to resource constraints, the IDS can
only choose K (K < N) components to probe at each time. An
abnormal component incurs a cost per unit time (depending on
the criticality of the component) until it is probed and fixed. The
objective is a dynamic probing strategy under the performance
measure of regret, defined as the performance loss compared to
that of a genie who knows the entire attack processes a priori
and probes optimally (under certain constraints) based on this
knowledge. We propose a policy that achieves sublinear regret
order, thus offers the same time averaged performance as that
of the omniscient genie.

Index Terms—Intrusion detection, dynamic probing, non-
stochastic multi-armed bandit, regret.

I. INTRODUCTION

Persistent monitoring of systems connected to the internet
(both wired, and now increasingly wireless and hybrid) is
critical to the maintenance of security and privacy in the
face of threats from increasingly sophisticated adversaries.
Intrusion detection systems (IDS) have long been accepted
as an essential layer in providing security to the information
infrastructure.

With the increasing size, diversity, and interconnectivity
of the cyber system, however, intrusion detection faces the
challenge of scalability: how to accurately and rapidly de-
tect and locate intrusions and anomalies in a large dynamic
network with limited resources. The two basic approaches
to intrusion detection, namely, active probing and passive
monitoring [1], [2], face stringent resource constraints when
the network is large and dynamic. Specifically, active-probing
based approaches need to choose judiciously which paths
and components of the network to probe to reduce overhead
(see, e.g., [3]); passive-monitoring based approaches need
to determine how to sample the network so that real-time
processing of the resulting data is within the computational

0This work was supported by Army Research Lab under Grant
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capacity of the IDS [4]. The problem is compounded by
the fact that models of adversarial behaviors are typically
unknown, non-parametric, and evolving.

A. Resource-Constrained Dynamic Probing under Unknown
Non-Stochastic Attacks

In this paper, we consider intrusion detection in a large
dynamic cyber network where, due to resource constraints, the
IDS cannot monitor (through either active probing or passive
sampling) all the components in the network simultaneously.
At each time instant, the IDS can only monitor part of the
network (similar models have also been considered in [5]–[7]).
The objective is to choose judiciously which components of
the network to probe to reduce the overall cost incurred to the
network by all infected components. Our focus is on handling
adversarial behaviors that are unknown, non-stationary, and
potentially reactive to the strategies of the IDS.

Consider a network with N components which can be paths,
routers, or subnets. At a given time, a component can be in
a healthy state or an abnormal state. An abnormal component
remains abnormal until the anomaly is detected and resolved.
A healthy component may be attacked and become abnormal
if the attack is successful. To model scenarios where attacks to
the network may not follow a well-behaved stochastic process
and the attackers may adapt to the actions of the IDS in
an arbitrary and unknown way, we adopt a non-stochastic
model in which the attack process at each component can be
any unknown deterministic sequence. Equivalently, we aim to
minimize the network cost for any possible attack traces. The
results in this paper thus apply to arbitrary adversary models.
It also applies to the scenario where the IDS only sees one
trace (or a small number of traces) of attack realizations, and
policies designed for ensemble-average performance under a
stochastic model may not be applicable.

The above problem can be considered as a variation of
the non-stochastic multi-armed bandit (MAB) problem first
considered by Auer et al. [8]. In an MAB problem, there
are N arms and a single player. Under the non-stochastic
modek, the reward offered by each arm when played is given
by an arbitrary unknown deterministic process. At each time,
the player chooses K (K < N) arms to play and accrues
the current rewards from the chosen arms. The performance
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measurer of an arm selection policy is given by regret, defined
as the performance loss compared to an omniscient genie
who knows the entire reward process of every arm a priori
and plays optimally based on this knowledge. To minimize
regret, or equivalently, to approach the performance of the
omniscient genie, it is crucial that the player learns from
past reward observations and improves its arm selection over
time. However, when the reward process of each arm is
an arbitrary deterministic sequence, past reward observations
bears no information on the current reward, and the regret will
grow linearly when the genie can always choose the largest
reward among all arms at each time. To make the performance
measure of regret meaningful, Auer et al. imposed constraints
on the genie so that approaching the average performance
of the genie becomes possible. This leads to the so-called
weak regret, in which, the genie that the player is competing
with, while still knows the entire reward process of every arm
noncausally, can only choose one fixed arm to play over the
entire time horizon. In this case, what the player is trying to
learn is which arm has the largest cumulative reward rather
than trying to catch the largest reward at each time instant.
Intuitively, the former is possible as past reward observations
become increasingly more informative for learning the largest
cumulative reward as time goes. Indeed, as shown in [8],
arm selection policies can be constructed to achieve a weak
regret of order O(

√
T ), which is sublinear with the time

horizon length T , indicating that the time-average performance
of the omniscient genie under switching constraints can be
approached as T increases. Auer et al. further considered a
more general switching constraint (referred to as the hardness
constraint) that specifies the maximum allowable number of
arm switchings that the genie can take over the entire horizon
T . They constructed a learning policy that achieves regret
O(
√

TS(T )) under a hardness constraint S(T ). The regret is
thus sublinear when the genie can only switch at a sublinear
rate with the horizon length T .

The intrusion detection problem considered in this paper can
be formulated as a variation of the non-stochastic MAB where
each component is an arm associated with an unknown cost
process. However, there are two major differences between
our problem and the non-stochastic MAB studied in et al.
[8]. First, in the non-stochastic MAB, rewards are accrued
only over the chosen arms, while in the intrusion detection
problem, costs occur over all components that are abnormal
even when they are not chosen. Second and more importantly,
the cost process of each component is determined by both the
unknown attack process and the actions of the IDS, whereas in
the non-stochastic MAB, the reward processes are independent
of the player’s actions. As a consequence, the current action
of the IDS not only affects the immediate performance loss
compared to the genie, but also affects future losses. To see
this, consider a case where at time t, the genie probed and
fixed an abnormal component while the IDS probed a normal
one. The impact of this action cannot be clearly bounded since
the unfixed abnormal component will continue incurring cost
until it is probed. These two major differences make a direct

extension of [8] inapplicable, and indeed, we show in this
paper that the regret performance in the intrusion detection
problem can be drastically different from that given in [8].

Our main results are as follows. First, by constructing a
specific policy, we show that the weak regret of the intrusion
detection problem can grow at an arbitrarily slow rate in T

(i.e., arbitrarily close to a bounded weak regret or, in other
words, complete learning). This is in sharp contrast with the
O(

√
T ) weak regret order that was shown to be optimal for

non-stochastic MAB in [8]. We further show that any bounded
weak regret cannot be achieved. The proposed policy is thus
order optimal. Under a general hardness constraint S(T ) on
the genie, we show that the proposed policy achieves regret
O(T 2/3S1/3(T )), which is sublinear when S(T ) is sublinear.
When all the components incur the same cost when infected,
the regret reduces to O(

√

TS(T )).

B. Related Work

Existing work on dynamic probing for intrusion detection
often assumes a stochastic model for the attack processes.
For example, in [9], a Markovian attack model was adopted
and the intrusion detection problem was addressed based on
Markovian decision processes and Q-learning. In [10], a more
general, potentially non-Markovian stochastic attack model
was considered. There are also quite a few studies on statistical
modeling of the attack processes [11]–[14] that aims to extract
the statistic model of the attacks based on the observed data
of IDS.

II. PROBLEM STATEMENT

Consider a network with N components. The attack process
at a component n is given by an arbitrary unknown determin-
istic sequence denoted by {an(t)}t≥1:

an(t) =

{

1, if attack is successful;
0, otherwise.

Each component has two sates, healthy (0) or abnormal (1).
Under a successful attack, the component state xn(t) becomes
abnormal and stays abnormal until it is probed and fixed
(see Fig. 1 for an illustration). An abnormal component n

incurs a cost cn per unit time. The objective of the IDS
is to minimize the total network cost over a horizon T by
judiciously choosing K (K < N) components to probe at
each time.
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Fig. 1. The attack process an(t) and the state xn(t) of a component n.

Let un(t) = {1 (probe), 0 (not probe)} denote the action
applied to component n at time t. Let Cn(t) denote the cost
incurred by component n at time t. The process {Cn(t)}t≥1

is determined by both the unknown attack process {an(t)}t≥1

and the actions {un(t)}t≥1 of the IDS on component n.
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Specifically, Cn(t) = cn if there exists a t0 ≤ t such that
an(t0) = 1 and u(τ) = 0 for τ = t0, t0 + 1, . . . , t, and
Cn(t) = 0 otherwise (see Fig. 1).

We measure the performance of a probing policy π by
regret, defined as the total performance loss compared to the
optimal policy π

g
S of a genie who knows non-causally the

entire attack process on every component but has a hardness
constraint S(T ). Let Rπ

S(T ) denote the regret of policy π up
to time T . We have

Rπ
S(T ) = Eπ

[

T
∑

t=1

N
∑

n=1

Cπ
n (t) −

T
∑

t=1

N
∑

n=1

C
πg

S
n (t)

]

,

where Eπ[·] denotes the expectation under policy π which
may be a randomized policy, and Cπ

n (t) the cost incurred by
component n at time t under a policy π.

It is easy to see that regret is nondecreasing with time.
The objective is to minimize the growth rate of regret Rπ

S(T )
with respect to time T under any possible attack processes
{an(t)}t≥1,1≤n≤N . Note that regret is a finer performance
measure compared to the time-average cost criterion since
any sublinear regret order leads to the minimum average cost
achieved by the genie as time goes to infinity. A smaller regret
order leads to a faster convergence to the minimum average
cost.

In Sec. III, we show that if S(T ) is linear with T , then
a sublinear regret is not achievable; otherwise we propose a
policy to achieve a sublinear regret.

III. SUBLINEAR REGRET UNDER HARDNESS CONSTRAINT

In this section, we consider the case where the regret is
defined with respect to a genie that can switch at a rate of
S(T ) (i.e., a hardness constraint of S(T )). The case of weak
regret where the genie cannot switch is addressed in Sec. IV.

Under a hardness constraint S(T ) on the genie, we first
establish a lower bound on regret, which implies that if S(T )
has a linear order with T , then the corresponding regret under
any policy π grows at least at a linear order with time. We then
propose a policy, referred to as Clear-Stay-Explore (CSE), that
achieves a sublinear regret as long as the hardness constraint
S(T ) is sublinear with T .

A. A Lower Bound on Regret

Theorem 1: The regret order is lower bounded by the order
of the hardness constraint S(T ), i.e., we have1

Rπ
S(T ) = Ω(S(T )).

Proof: Construct an attack process as follows. First, the
number of attacks up to time T is set equal to S(T ). Second,
at each time at most K components can be attacked. Third,
at each time, given that M (M ≤ K) components will be
attacked, these M components are drawn uniformly from the
set of N components.

1For any two functions f(T ) and g(T ), f(T ) = Ω(S(T )) is equivalent
to lim supT→∞

f(T )
S(T )

being positive, possibly infinite.

Based on the above attack process, we consider the expected
total cost under any policy π where the expectation is taken
over all realizations of attacks. Clearly, at each time when at
least one attack occurs, the expected immediate cost under any
policy π is lower bounded by a constant due to the uniform
drawing of the attacked components. Consequently, the total
expected cost of policy π grows at least at the same order of
S(T ) since the number of attacks is equal to S(T ). On the
other hand, the genie achieves zero total cost since at most K

components can be attacked at each time and the total attacks
are equal to the hardness constraint S(T ). The expected regret
of policy π thus grows at least at the same order of S(T ),
where the expectation is again taken over all realizations of
attacks. Therefore, there must exist one realization of attacks
where the regret grows at least at the same order of S(T ).

B. The CSE Policy

Since sublinear regret is not achievable when S(T ) is linear,
we will focus on the case where S(T ) is sublinear with time.
In the following, we proposed the CSE policy to achieve a
sublinear regret when S(T ) is sublinear. For the ease of the
presentation, we present the policy for the case of K = 1 (i.e.,
can only probe one component at each time). The extension
to the general case is straightforward.

PSfrag replacements
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Fig. 2. The epoch structure of the CSE policy (dotted line: virtual switching
times in S̃(T ), |S̃k| denotes the number of virtual switching times in epoch
k).

In order to achieve a sublinear regret order and approach
the genie’s time-average performance over time, it is crucial
that the policy be able to localize and follow (to a certain
quantifiable degree) the switching actions of the genie which
depend on the attack processes unknown to the policy. This is
possible due to the sublinear hardness constraint on the genie.
The basic idea of the proposed CSE policy is thus to first
construct a sequence of virtual switching times for the purpose
of localizing the switching actions of the genie. Specifically,
let S̃(T ) be a sequence of time instants from 1 to T , which we
refer to as the virtual switching times. This sequence can be
arbitrary as long as its cardinality grows with T at the same
order2 as S(T ):

|S̃(T )| = Θ(S(T )).

The basic structure of the CSE policy is constructed based on
this sequence of virtual switching times S̃(T ). Specifically, we
first partition time into epochs, where the kth epoch contains
2k−1 virtual switching times in S̃(T ) (see Fig. 2). This
construction of the epoch structure ensures that the ratio of the
true switching times of the genie to the virtual switching times

2For any two functions f(T ) and g(T ), f(T ) = Θ(g(T )) is equivalent
to lim supT→∞

f(T )
S(T )

being positive and finite.



4

is uniformly bounded by a constant in all epoches and under
any attack processes (see Lemma 1). This allows us to design
the actions of the IDS that leads to bounded performance loss
compared to the genie within each epoch.

We then further partition each epoch into segments with
equal length (see Fig. 3). The length of the segments, which
depends on the epoch length, will be optimized for minimum
regret as given in Theorem 2. Within each segment, the actions
of the policy can be summarized as clear, stay, and explore.
Specifically, at the beginning of each segment, we probe all
components in a round-robin fashion to clear all abnormal
components caused by previous attacks. After clearing all the
component, we continue the round-robin search and stay at
the first component that becomes abnormal. In the remaining
of the segment, we explore periodically (see Fig. 3) where
the exploration period depends on the segment length and
will be optimized for minimum regret (see Theorem 2). In
each exploration, we check only those components that have a
higher cost (more critical) than the previous component we are
staying with. Such components are probed one by one starting
from the most critical one for at most one round. We stop at
the first such component that is found to be abnormal and
stay with this component (that ends the current exploration).
If no such components are found to be abnormal during this
one round of exploration, we go back to the component we
were previously staying with until the next exploration. This
completes the description of the CSE policy.PSfrag replacements

Segment SegmentEpoch:

abnormal

Clear Stay

Explore

Fig. 3. The structure of each epoch.

C. The Regret Analysis

In this section, we analyze the regret performance of the
CSE policy and specify the optimal choice of the parameters
in the CSE policy.

Theorem 2: Let Tk denote the length of the kth epoch. The
optimal length T ∗

s (Tk) of segments in this epoch is given by

T ∗
s (Tk) = b( Tk

|S̃k|
)2/3c,

where |S̃k| denotes the number of virtual switching times in
epoch k. The optimal exploration period T ∗

x in each segment
is given by

T ∗
x (Tk) =

√

T ∗
s (Tk).

The resulting CSE policy has the following regret:

Rπ
S(T ) = O(T 2/3S1/3(T )).

The optimal value of the segment length ∗
s(Tk) is to ensure

that within each epoch, there is only a sublinear number of

segments that contain the genie’s switchings. In other words,
as time goes, in most of the segments in each epoch, the
genie does not switch and probes the same component. Regret
in such segments is lower, making a sublinear regret order
possible. The optimal exploration period T ∗

x is obtained by
balancing the tradeoff between the delay in catching an attack
to a more critical component and the overhead associate with
exploring.

The proof is based on the following two lemmas. The first
one shows that for all epochs, the number of genie switchings
is within a constant factor of the virtual switching times, i.e.,
the sequence of virtual switching times S̃(T ) gives an order-
accurate estimate of the number of genie’s switchings in each
epoch. This is important in analyzing the regret in each epoch,
as given in the second lemma. The detailed proof is omitted.

Lemma 1: Let Ak denote the number of genie’s switchings
in the kth epoch, which depends on the underlying attack
processes unknown to the policy. Let |S̃k| denotes the number
of virtual switching times in epoch k. We have, for all k,

Ak

|S̃k|
≤ C

for some constant C independent of k and the underlying
attack processes.

Lemma 2: Let Tk denote the length of the kth epoch. The
regret in this epoch is given by

Rπ
S(Tk) = O(T

2/3

k (Ak)1/3),

where Ak is the number of genie’s switchings in this epoch.
We now consider a special case where all components have

the same cost cn. In this case, we show that the regret can be
improved with two minor modifications to the CSE policy.

First, we partition the kth epoch into
√

Tk |S̃k| segments.
Second, we do not need to carry out exploration in each
segment.

Theorem 3: If all components have the same cost cn ≡ c,
the modified CSE policy achieves regret

Rπ
S(T ) = O(

√

TS(T )).

IV. ACHIEVING ORDER-OPTIMAL WEAK REGRET

In this section, we consider weak regret, i.e., the genie can-
not switch and always stays on the same set of K components.
We show that a slight modification of the CSE policy achieves
a regret arbitrarily close to finite. We then establish a strict
lower bound on regret showing that a finite regret cannot be
achieved under any policy. The modified CSE policy is thus
order-optimal.

In the modified CSE policy, we do not partition time into
epochs or segments. We first carrier out a round-robin search
and stay with the first K components that are found to be
abnormal. We then perform the same exploration procedure
with a rate of E(T ) (i.e., total E(T ) explorations over a
horizon of length T ) that grows at an arbitrarily slow rate
with T .
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Theorem 4: Under the modified CSE policy, the regret has
order E(T ), which can be set arbitrarily close to O(1).
Furthermore, a finite regret cannot be achieved under any
policy.

V. CONCLUSION

We studied the intrusion detection problem under an un-
known non-stochastic attack model. We proposed the CSE
policy to achieve a sublinear regret order with respect to an
omniscient genie who knows noncausally the entire attack
processes.
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